ar X iv : 0 90 6 . 07 90 v 1 [ m at h . A G ] 3 J un 2 00 9 Explicit Computations on the Desingularized Kummer Surface
نویسنده
چکیده
We find formulas for the birational maps from a Kummer surface K and its dual K∗ to their common minimal desingularization S . We show how the nodes of K blow up. Then we give a description of the group of linear automorphisms of S . Mathematics Subject Classification (2000). Primary 14J28, 14M15; Secondary 14J50.
منابع مشابه
ar X iv : 0 90 6 . 07 63 v 1 [ m at h . C O ] 3 J un 2 00 9 HIGHER DIMENSIONAL
We prove upper bounds on the face numbers of simplicial complexes in terms on their girths, in analogy with the Moore bound from graph theory. Our definition of girth generalizes the usual definition for graphs.
متن کاملar X iv : 0 90 8 . 01 53 v 1 [ m at h . G T ] 2 A ug 2 00 9 On Fibonacci knots
We show that the Conway polynomials of Fibonacci links are Fibonacci polynomials modulo 2. We deduce that, when n 6≡ 0 (mod 4) and (n, j) 6= (3, 3), the Fibonacci knot F (n) j is not a Lissajous knot. keywords: Fibonacci polynomials, Fibonacci knots, continued fractions
متن کاملar X iv : 0 90 2 . 11 06 v 3 [ m at h . Q A ] 5 J un 2 00 9 ON PROJECTIVE EQUIVALENCE OF UNIVARIATE
We pose and solve the equivalence problem for subspaces of Pn, the (n + 1) dimensional vector space of univariate polynomials of degree ≤ n. The group of interest is SL2 acting by projective transformations on the Grassmannian variety GkPn of k-dimensional subspaces. We establish the equivariance of the Wronski map and use this map to reduce the subspace equivalence problem to the equivalence p...
متن کاملar X iv : 0 90 6 . 16 30 v 1 [ m at h . SP ] 9 J un 2 00 9 FINITE GAP JACOBI MATRICES , II . THE SZEGŐ CLASS
Let e ⊂ R be a finite union of disjoint closed intervals. We study measures whose essential support is e and whose discrete eigenvalues obey a 1/2-power condition. We show that a Szeg˝ o condition is equivalent to lim sup a 1 · · · a n cap(e) n > 0 (this includes prior results of Widom and Peherstorfer–Yuditskii). Using Remling's extension of the Denisov–Rakhmanov theorem and an analysis of Jos...
متن کاملar X iv : 0 90 2 . 17 97 v 2 [ m at h . A G ] 1 9 N ov 2 00 9 DERIVED EQUIVALENCES FOR COTANGENT BUNDLES OF GRASSMANNIANS VIA CATEGORICAL sl 2 ACTIONS
We construct an equivalence of categories from a strong categorical sl(2) action, following the work of Chuang-Rouquier. As an application, we give an explicit, natural equivalence between the derived categories of coherent sheaves on cotangent bundles to complementary Grassmannians.
متن کامل